On the spectral and conservation properties of nonlinear discretization operators
نویسندگان
چکیده
Following the study of Pirozzoli [1], the objective of the present work is to provide a detailed theoretical analysis of the spectral properties and the conservation properties of nonlinear finite difference discretizations. First, a Nonlinear Spectral Analysis (NSA) is proposed in order to study the statistical behaviour of the modified wavenumber of a nonlinear finite difference operator, for a large set of synthetic scalar fields with prescribed energy spectrum and random phase. Second, the necessary conditions for local and global conservation of momentum and kinetic energy are derived and verified for nonlinear discretizations. Because the nonlinear mechanisms result in a violation of the energy conservation conditions, the NSA is used to quantify the energy imbalance. Third, the effect of aliasing errors due to the nonlinearity is analyzed. Finally, the theoretical observations are verified for two simple, thought relevant, numerical simulations.
منابع مشابه
Multi-symplectic Fourier Pseudospectral Method for the Nonlinear Schrödinger Equation
Abstract. Bridges and Reich suggested the idea of multi-symplectic spectral discretization on Fourier space [4]. Based on their theory, we investigate the multi-symplectic Fourier pseudospectral discretization of the nonlinear Schrödinger equation (NLS) on real space. We show that the multi-symplectic semi-discretization of the nonlinear Schrödinger equation with periodic boundary conditions ha...
متن کاملNumerical resolution of large deflections in cantilever beams by Bernstein spectral method and a convolution quadrature.
The mathematical modeling of the large deflections for the cantilever beams leads to a nonlinear differential equation with the mixed boundary conditions. Different numerical methods have been implemented by various authors for such problems. In this paper, two novel numerical techniques are investigated for the numerical simulation of the problem. The first is based on a spectral method utiliz...
متن کاملOn the Spectral Properties of Degenerate Non-selfadjoint Elliptic systems of Differential Operators
متن کامل
The spectral properties of differential operators with matrix coefficients on elliptic systems with boundary conditions
Let $$(Lv)(t)=sum^{n} _{i,j=1} (-1)^{j} d_{j} left( s^{2alpha}(t) b_{ij}(t) mu(t) d_{i}v(t)right),$$ be a non-selfadjoint differential operator on the Hilbert space $L_{2}(Omega)$ with Dirichlet-type boundary conditions. In continuing of papers [10-12], let the conditions made on the operator $ L$ be sufficiently more general than [11] and [12] as defined in Section $1$. In this paper, we estim...
متن کاملAsymptotic distribution of eigenvalues of the elliptic operator system
Since the theory of spectral properties of non-self-accession differential operators on Sobolev spaces is an important field in mathematics, therefore, different techniques are used to study them. In this paper, two types of non-self-accession differential operators on Sobolev spaces are considered and their spectral properties are investigated with two different and new techniques.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- J. Comput. Physics
دوره 230 شماره
صفحات -
تاریخ انتشار 2011